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J. Phys. A: Math. Gen. 16 (1983) 1155-1168. Printed in Great Britain 

Momentum, angular momentum and their quasi-local null 
surface extensions 

M Ludvigsen: and J A G Vickers 
Department of Mathematics, University of York, Heslington, York YO1 5DD, England 

Received 7 October 1982 

Abstract. Let M be an asymptotically flat space-time which satisfies the dominant energy 
condition and let K be a null hypersurface of M which meets 9' in a space-like cross 
section S given by r = CO, where r is an affine parameter along the generators of h". It is 
shown that there exists a quasi-local momentum P,,(r), defined by means of an integral 
over the r =constant cross sections of .C; which tends to the Bondi momentum as r + m, 
and which satisfies the radial 'mass-gain condition' P,,(r2)k' aPa(rl)ka when r2  s r l ,  where 
k" is a constant future pointing null vector. This condition is then used to show that, in  
certain circumstances, the Bondi momentum is always future pointing or, in other words, 
that the Bondi mass is always positive. A quasi-local angular momentum is also defined, 
which tends to Bramson's angular momentum as r .+ 00. 

1. Introduction 

Some twenty years ago Bondi et a1 (1962) introduced a definition of momentum for 
a null asymptotically flat space-time which has since become known as Boridi momen- 
tum. Unlike the ADM four-momentum which is time independent, the Bondi momen- 
tum is a four-vector function which is defined on the space of all space-like cross 
sections (cuts) of 9' and which lies in the Minkowski space of BMS translations. Given 
any cut S of $', the Bondi four-momentum P, (S)  may be interpreted as the total 
energy-momentum of the space-time at the retarded time defined by S .  One of the 
most important properties of the Bondi mass is that it satisfies the 'mass-loss formula' 
on 9'. In terms of the Bondi four-momentum this may be stated as follows: given 
two arbitrary cuts S1 and S 2  of 9' with S 2  entirely to the future of S1 and some future 
pointing vector k" ,  then P,,(S2)k" s P . ( S l ) k "  provided the space-time satisfies the 
weak energy condition in a neighbourhood of $+. The mass-loss condition is important 
because it shows that gravitational radiation emitted by 2n isolated system carries 
positive mass, but it says nothing about the total mass of the system. It has been a 
long standing conjecture in general relativity that for an asymptotically flat space-time 
which satisfies an appropriate energy condition the Bondi mass is positive (i.e. P,(S) 
is future pointing). This is usually referred to as the positive mass conjecture at null 
infinity. 

f Present address: Department of Mathematics, University of Canterbury, Christchurch, New Zealand 
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1156 MLudtiigsen and J A  G Vickers 

In a number of recent papers this conjecture has been confirmed. One method 
has involved the use of topological arguments similar to those used by Schoen and 
Yau (1981) in their proof of the positivity of the ADM mass, while another method 
has involved the use of spinor techniques (see e.g. Ludvigsen and Vickers 1982 or 
Horowitz and Perry 1982). This second approach has been largely based upon Witten’s 
proof (1981) of the positivity of the ADM mass, but replaces the space-like hypersur- 
faces by one that is space-like and asymptotically null. The difficulty of this method 
lies in showing the existence of an asymptotically constant spinor field which satisfies 
a certain differential equation. In this paper we adopt a slightly different approach. 
Rather than considering space-like and asymptotically null hypersurfaces, we restrict 
our attention to null hypersurfaces. On such hypersurfaces it becomes possible to 
replace the Witten equation by a much simpler first-order propagation equation, which 
is easily seen to possess a solution with the required asymptotic behaviour. While 
problems concerning the development of caustics prevent this method from giving a 
general proof of the positivity of the Bondi.mass, it does provide a simple and direct 
proof of positivity in a number of physically interesting situations. Furthermore, this 
propagation equation, unlike the Witten equation, has the additional property that it 
may be used to give a simple expression for the total angular momentum. 

In 8 3 we will show how these methods may be used to give a quasi-local definition 
of momentum in which a total energy-momentum Pa ( S )  is assigned to a two-surface 
S bounding a compact portion H of a space-like hypersurface. This definition has 
several desirable properties. Firstly, in the limit that S becomes a cut of 4’, P a ( S )  
becomes the Bondi momentum; secondly, if S 2  is obtained by moving S1 out along 
the null geodesics orthogonal to SI, then Pa (S2)k”  3 Pa (Sl)ka ; and thirdly, the definition 
reduces to the correct one for linearised gravity. 

We also show how the same methods may be used to provide a quasi-local definition 
of angular momentum S,t ,(S).  This definition has the properties that in the limit that 
S becomes a cut of 9+, S , ( S )  becomes Bramson’s definition of angular momentum, 
and that it reduces to the correct result for linearised gravity. 

2. Bondi momentum 

Let M be an asymptotically flat space-time with future null infinity 4’ and let JY be 
an outgoing null hypersurface in M which meets 4+ in some space-like cross section 
S,.  The Bondi momentum P,(S,) may be considered as an abstract four-vector in 
the Minkowski BMS vector space of translations MO and represents the total momentum 
of the space at the retarded time given by LV. If we write MO = Y 0 9, where Y is 
the two-spinor space which Bramson (1976) calls the asymptotic spin space of iM, 
then on using the abstract index notation of Penrose (1968), we may write Pa = PAa 
where the indices A and A’ refer to .4p and 9 respectively. In this section we shall 
first give an abstract coordinate-free definition of PA*, and then show how this may 
be naturally generalised to give a quasi-local definition of the total energy-momentum 
P,(S) associated with a portion of space-time bounded by some finite space-like cross 
sections S of N.  

We begin by describing the asymptotic spin space 9 and its relationship to 
asymptotic spinor fields on “V. Let r be an affine parameter along the null generators 
of ,V which tends to +cc as S ,  is approached. As all of the following analysis is 
invariant under a change of affine parameter, it is not necessary to impose any further 
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restriction upon its choice. We shall not, for instance, demand that r be a Bondi 
radial coordinate. Given r,  we now introduce two null vector fields I ,  and n,  on K 
which are normalised such that Ian" = 1 with I ,  pointing along the generators and 
satisfying I"  = a x " / &  and with na  pointing out of and orthogonal to the r = constant 
cuts of K. Under these conditions I ,  and n,  are defined uniquely and furthermore I ,  
satisfies PI, = O  (where P := lava). Since 1, and n, are null and satisfy Ian" = 1 we 
may write them in the form I ,  = oAoA' and n,  = LALA' where the spinors OA and L A  

satisfy O A L ~  = 1 and P o A  = 0. 
A spinor field AA on X is asymptotically covariantly constant if oAAA and L ~ A A  

remain finite as r + CO and in addition 

(1) A A'  B A A' B lim ri o o V A A , A e  = lim ro L o V A A , A B  = 0 
r-OC r-rm 

and 
A A '  E A A'  B lim rL o L VAAsAB = lim ro L L V A A ' A B  = O .  

r-m r - f  

However, as Bramson has pointed out, equations (1) and (2) are inconsistent for 
radiating space-times, so that in the presence of radiation, asymptotically constant 
spinor fields on N do not exist. Nevertheless it is possible to give a weaker condition 
of asymptotic constancy by demanding that equation (1) alone is satisfied, and this is 
consistent even in the presence of radiation. This weaker condition is reasonable for 
the following reasons. Firstly, in the absence of radiation, it reduces to the stronger 
condition (i.e. when there is no radiation equation (1) implies equation ( 2 ) ) ,  and 
secondly because it implies, in general, that the field possesses asymptotically two 
complex degrees of freedom. Thus if X^, (A = 0, 1) is an asymptotically constant 
spinor basis satisfying 

and A A  is an arbitrary asymptotically constant spinor field, then the asymptotic spinor 

component A A  of AA with respect to X i ,  which is given by 
0 

0 
is such that AA is constant. In what follows it will be useful to consider A as an 
abstract index referring to an abstract spinor space Y, the asymptotic spin space, and 
equation (4) as giving a mapping from asymptotically constant spinor fields into 9. 

Thus, for each asymptotically constant spinor field there exists a single spinor A A ,  its 
asymptotic component, in 9. From (3) and (4) it is clear that 

0 

'A lim (AAp A )  = AAF . 
r - c c  

We are now in a position to give an abstract definition of the Bondi momentum 
P A A ) ( S ~ )  with respect to S, .  Let A A  be an arbitrary asymptotically constant spinor 
field and let 

( 5 )  (PAB = TA~AVB,  1 C' A c f - $ A c ~ V ~ A C ' A B , .  
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Then 

where cc stands for complex conjugate and dS is the surface element of S,, the 
r = constant cut of X. 

In vector form (6) gives 

P a ( S m ) k a  = lim f , F a b  dEab 
,-roo 

(7) 

"A O A ,  k" = A A 
From equation (7) it is clear that Pa is independent of the choice of affine parameter 

r .  That (6) (or (7)) does indeed yield the standard expression for Pa can be seen by 
referring everything to a Bondi-type coordinate system. In this case (see appendix) 
(6) gives 

and dEab = l [ "n  b1 dS  is the surface form of S,, the r = constant cut of N. 

3. Quasi-local momentum 

Up to now, apart from satisfying (l), we have placed no restriction upon the spinor 

field A A ;  only its asymptotic form is determined by specifying A A .  We shall now restrict 
the spinor field further by requiring that it satisfies a first-order propagation equation, 
which reduces to parallel propagation for a flat space-time, and which determines the 

whole of the field A A  once its asymptotic component AA is given. Once this equation 
is imposed the integral 

0 

0 

I ( r ) =  Q A M ~ L ~  d S + c c  f. 
O A O A ,  is linear in A A 

according to 
and thus determines a quasi-local momentum PAA-(S,)EY@Y 

O A  'A' P A A ' ( S ~ ) A  A = I ( r ) .  

PAA, will however depend crucially upon the choice of propagation equation. The 
particular propagation law that we impose upon AA appears to be the natural choice 
in the sense that it satisfies the following conditions: (i) it reduces to parallel propagation 
when M is flat; (ii) it implies that the corresponding momentum satisfies the mass-gain 
formulaP,(S,,)k" >P,(S,,)k" for r2 3 r l  provided the dominant energy condition holds 
on X ;  (iii) in the case of linearised theory Pa(S)  reduces to the 'correct' expression 
for the total momentum contained within the surface S .  
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A remarkable property of Fab given by (8) is that it satisfies the relation 

VbF& = i ( V B ~ r h ~ , V ( ~ " ' A ~ ,  - V B ~ , A ( ~ V ~ l C ' h c ,  + cc) - +G,bk (12) 

where k, = AAAA, and Gab is the Einstein tensor. This result can be proved by using 
the spin coefficient form of the Ricci identity 

V I c V d j T b  = :RabcdTa (13) 

(this equation, incidentally, fixes the sign of our Riemann tensor). Thus, on using a 
null hypersurface form of Gauss's theorem (see appendix) based on X with affine 
parameter r, we have 

I ( r2) -z ( r l )  = 1" +s, IaVbFab dS dr 
r = r ,  

[ ( v B ~ t h ~ t V ( ~ C ' h ~ ]  - v B A m A  , B V A ] ~ ' / \ C ,  cc)o AOA' 
= 'i L, fS, 
- Gablak '1 dS dr. (14) 

If we now restrict AA to satisfy the propagation equation 

(15) A A' o o VBA'AA = O ,  

then, after some manipulation, it can be shown that (14) becomes 

-',=,I Js,  

Thus provided that the dominant energy condition holds, G,bl"k C 0,  the integrand 
in (16) is non-negative and thus 

Ih )  * I ( r d  for rz 3 rl. (18) 

From this it can be seen that if (15) does indeed determine AA over the whole of X 
once its asymptotic component is specified, then ( lo) ,  (11) and (15) will define a 
quasi-local momentum satisfying condition (ii). We now proceed to show that this is 
actually the case. 

In terms of the GHP spin coefficient notation (Geroch er a1 1973) equation (15) 
may be written 

PAo = aho/& = 0 (19) 

i h o + p h l  = o (20) 
where A. and A are the components of AA with respect to oA and LA, p is the divergence 
of N,  and i is the 'angular' GHP edth operator. From these two equations it is clear 
that once AA is specified on some r =constant cut, then it is defined over the whole 
of K :  equation (19) determines A. on K and thus in turn determines A I  by (20). 
Furthermore, it is easily seen that these equations are compatible with the asymptotic 
conditions given by (1). Thus a spinor field satisfying (15) is uniquely determined 

over the whole of ..lr once its asymptotic component A A  is specified. Since equation 
(15) is obviously satisfied by a parallelly propagated spinor field when M is flat we 

0 
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have, by uniqueness, that the field specified by a given A A  is indeed parallelly propa- 
gated over X when M is flat. Thus the propagation law given by (15) satisfies condition 
(i). We conclude this section by considering condition 6). 

Let M be a linear space-time with metric gab = T a b  + hab, with hob small and O ( F ) ,  
say, which satisfies the linearised Einstein equation 

Gab = - K T ~ ~  (21) 

where K is O ( s ) .  We shall denote all small quantities by O ( E )  and neglect products 
of such quantities. Let &" be a null hypersurface with respect to T a b  and A" a 
corresponding hypersurface which is null with respect to &b. Then, with an abuse of 
notation, we have 

M L u d v i g s e n  a n d  J A  G V i c k e r s  
0 

N - K '  = O(&). (22) 

Let AA,  A i  be spinor fields on K and A'' respectively, with both having the same 
asymptotic limit but with A A  propagated according to (15) and A a parallelly propagated. 
Thus 

A A - h i  = O ( E ) .  (23) 

Since X defined by (17) vanishes in the case of a flat space-time we have 

x = O(&). (24) 

Substituting all this information into (16) we obtain 

P , ( r 2 ) - P a ( r 1 ) = &  If T a b l " k b  dS dr 

which gives the correct value in flat space-time for the total energy momentum 
contained between the cuts r = r l  and r = r2.  

4. Applications 

As was mentioned in the introduction, the almost inevitable occurrence of caustics 
on the null hypersurface imposes a general restriction on the large-scale applicability 
of our methods and prevents us from obtaining a proof of the positivity of the Bondi 
mass for a general space-time. Nevertheless, in a number of physically interesting 
special situations, such as a space-time containing a single black hole, our methods 
can be used to show that the Bondi mass is positive. We shall in this section consider 
these situations. 

On expressing (10) in spin coefficient notation based on the GHP formalism, using 
equation (20) and integrating by parts, the quantity I ( r )  can be written as 

where p is the divergence of K and p '  is the divergence of the ingoing null hypersurface 
X'  which meets S ,  orthogonally. With our choice of tetrad, I" and n n  are null tangents 
to K and N respectively and thus p and p '  are both real and given by 

(27) 

(28) 

A - A '  B P = L  o o VAA'OB 

A-A'  B p ' = - 0  L L VAA'LB. 
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We consider first the rather restricted situation where X has no caustic surfaces and 
converges to a single point, which we represent by 0. If we choose r such that it 
vanishes at 0 then, since X is the null cone emanating from 0, we have for small r 

P - - ( 1 / r )  p ' -  l / r  and dS - r 2  dSo 

so that I ( r )  is order r and thus 

O A O A '  Since the above is true for all null vectors k" = A  A (which are necessarily future 
pointing) this implies that Pa is future pointing or, in other words, the Bondi mass is 
positive. The condition that X converges to a point is, of course, rather severe and 
therefore the result is in itself of limited value. 

We consider next the considerably more general situation where K is allowed to 
develop caustics but where there exists an ingoing null hypersurface K' which does 
converge to a point, 0 say, and which meets X in a non-singular space-like cut S 1  
(see figure 1). Let r be an affine parameter on X such that r = r l  on S1, and let r' be 
an affine parameter on X' such that r' = r ;  on SI and r' = 0 at 0. From (16) we have 

and, by adapting our previous arguments to an ingoing null hypersurface X' ,  one can 
show that 

where A X is a spinor field on K' satisfying the propagation law 

(32) 
A A' 

L L VBA,AA=O.  

\ 
\ 

Figure 1. 

In terms of spin coefficients (32) may be written 

P'A; = O  

B A ;  +p 'hb  = 0. 
(33) 

(34) 
Thus, in order to show that Pak a 3 0, it remains to show that A A  may be related 

to A X  on S1 in such a way that I ( r l ) a I ' ( r \ ) .  We do this by demanding that 

on SI. (35) h o = ~ b  and BA -t p ' h o  = 0 
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These conditions are compatible with (31) and thus uniquely determine Ak over the 
whole of K‘. On SI we have 

where Y : = A ;  - A 1  

( -p ’A&-phIh l  + p Y P )  dS. 

Thus 

I ;  = I I + $  p Y F d S  
s1 

where we have integrated by parts and used (20), (34) and (35). From the well known 
spin coefficient equation 

a p / a r = P p  = p 2 + ~ ~ + ~ o o  (37) 

together with the dominant energy condition which implies that ao0 2 0, we see that 
aplar  z= 0. Thus, since p + 0 as r + 00 on a null hypersurface which meets 9+, we have 
p s 0 on S1 and (36) gives 

I l a I ; .  (38) 

Putting (30), (31) and (38) together we finally have 

P,(S,)k” 2112-1; 2 0  (39) 

so that P,(S,) is thus future pointing. 
Finally, we consider the case where M contains a single black hole and where N ‘ ,  

instead of converging to a point, meets a trapped surface T (see figure 2) on which, 
by definition, p > 0 and p ’  > 0. In this case we have 

P,(S&aaIl==Ii ==I’ (T )  (40) 
where 

I (  T )  = 0 (pA (;hb + p ’A {I; ) dS. (41) 

Since p and p ‘  are both positive, 1’( T )  > 0 and thus by (40) P, is again future pointing. 

T 
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"'/ 
%\ 4' 

Figure 2. 

5. Angular momentum 

In this section we will show how the methods used in giving a quasi-local definition 
of momentum may also be used to give a quasi-local definition of angular momentum. 
We start by considering the expression 

(42) 
r-m 

where A A  is determined over the whole of K by specifying its asymptotic component 

iA and demanding that A A  satisfies the propagation equation (15) o o VBAAA = 0 
just as in § 3. 

In terms of a Bondi-type coordinate system (U, r, 8,4) it may be shown that dS, 
the surface element of the r = constant cuts of N, is given by 

(43) 

In order to calculate the RHS of (42) it is therefore necessary to obtain asymptotic 
expansions for A 0  and A I  as far as terms of order r -2 .  In terms of spin coefficients 
based upon the spinor dyad (OA,  L A )  introduced in B 2, equation (15) may be written 

A A' 

dS = ir2(1 -a0a0r-2) dSo+O(r- ') .  

DAo=O (44) 
SA 0- a A o  = - P A I .  (45) 

Since in the present coordinate system D is just alar, (44) immediately gives 

A&, B,4) = A o ( &  4 ) .  In order to obtain an asymptotic expansion for A we use the 
fact that 

- 

0 

8 = r i a / a x '  

a = a  0 r -1 + ( ~ o ~ o - i l o ~ o ~ r ~ 2 + ~ c T o ~ o a o + ~ o d o a 0 - ~ ~ ~ ~ r ~ 3 + ~ ( r ~ 4 ~  

p = - r - ' - g0a r -3+o( r -5 )  

where a o  = 5 cot e and 210 is the Newman-Penrose 'edth' operator on a metric sphere:. 

f Note. These expansions are easily obtained from those in Exton et a [  (1969) on making the null rotation 
1 A + 1 A - GoA. 
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On writing A l ( r ,  8, d)=Al(8, d)+Al(8, d)rC1+A1(8, d ) r - 2 + O ( r - 3 ? ,  substituting 
into (45) and equating powers of r we obtain 

- 0  0 0 
For asymptotically constant spinors we have &Ao + A l  = 0 and doho = 0, so that (46) is 

automatically satisfied, (47) gives A I = Aodoc? and (48) gives A I  = (f&? - c ? O ~ o ~ o ? A o .  We 
thus obtain the asymptotic expansions 

0 2 0 

0 

A&, 8, d )  = A d 4  d )  (49) 

Substituting (431, (491, (50) into the RHS of (42) thus gives 

0- o " 2  n - o o  - O  0 
A o A l  dS = [ - A o ~ A o r 2 + A o d o 6 0 r + ( t ~ ~  -6 8~ )Ao+a U AodAo]sin 8 de  d d  I O - O  

+ O(r - ' )  

= { - $ r 2 B ( i &  + r B o ( A  ,%') +$[GI - 2a08v0 - ~ ( C T ~ ~ ~ ) ] ! ; }  sin 8 de  dq5 

+ O(r-'). (51) 
The first two terms in the integrand vanish by the properties of the edth operator so 
that 

where 

wAB : = Is* (6: - 2 6  0- dU 0 - B ( U ~ + ~ ) ) O A O B  dSo 

which is just Bramson's (1975) expression for the spinor components of the angular 
momentum. 

we now define the quasi-local angular momentum wAB(Sr )  
to be given by 

For a general cut S,  of 

W A B ( S ~ ) A  A = A , A A ~ I ~ A ~ B  dS 
O A O B  h, (52) 

where A A  satisfies ~ A o  + p A  1 = 0, doh0 = 0. 
As we have seen, in the limit that S,  becomes a cut S ,  of 9+, WAB(S,)  agrees with 

Bramson's expression. It may also be shown that in the case of linearised gravity 
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w A B ( S r )  reduces to the ‘correct’ value for the spinor components of the total angular 
momentum contained within S .  

It is important to note that (42) is only well defined because of two impoqant 
properties of the propagation equation that we have used. Firstly it determines A I  in 
such a way that the potentially unbounded O(r )  term in (51) in fact vanishes, and 
secondly because the O ( f 2 )  terms in the asymptotic expansion of A A  are completely 
determined by the asymptotic components A A .  This is not true, for example, of the 
‘Witten equation’ on null surfaces that we used in our previous paper (Ludvigsen and 
Vickers 19821, since for that equation A I ( @ ,  4 )  may be freely specified. 

n 

2 

6. Discussion 

Even though the methods we have used here cannot be used to give a general proof 
of the positivity of the Bondi mass, they provide a simple and direct proof in the 
special, but physically interesting, situations considered in 9 4. The main reason for 
the simplicity of our method is the choice of null rather than space-like hypersurfaces. 
By restricting our attention to such surfaces, we have been able to replace the ‘Witten 
equation’ by a much simpler first-order propagation equation which also gives positiv- 
ity. It is not altogether surprising that such a simplification occurs on null hypersurfaces 
as spinor methods are much more natural on such surfaces. 

In § 3 we were able to show how to give a quasi-local definition of the energy- 
momentum associated with finite cuts of X in terms of a four-vector defined on 
MO = Y @ 9. Furthermore, we showed that such a definition of quasi-local momentum 
possesses a number of desirable properties. In the situation where N converges to a 
single point, 0, say, it is possible to give a different definition of local energy- 
momentum. Rather than specifying AA in terms of its asymptotic component, it is 
possible to determine A A  over the whole of N by specifying AA at 0. We can then define 

where LA E Yo is the value of A A at 0, PAA’(S) E Yo @ 90 and YO is the spin space at 
0. The drawback with such a definition is that it defines the quasi-local momentum 
as a four-vector in the Minkowski space CO := Y @ p o  and there is, in general, no 
easy way to relate a vector in Go to one in MO = 9 @ 9, the Minkowski space of BMS 

translations. Such a definition of quasi-local momentum does however satisfy a 
mass-gain condition and reduces to the ‘correct’ expression in linearised gravity. 

In 9 5 we were able to show how to give a simple quasi-local definition of the 
angular momentum associated with finite cuts of N .  This definition has the property 
that in the limit that S becomes a cut of 4’ it agrees with Bramson’s expression. 
Unlike the case of the mass, this limit depends crucially upon the particular choice 
of propagation equation. That equation (15) may be used to give both a definition 
of quasi-local mass which satisfies a radial ‘mass-gain’ condition and a definition of 
quasi-local angular momentum with the right asymptotic behaviour is thus quite 
remarkable. 

Finally, it is worth remarking upon certain similarities between the expressions in 
this paper and those given recently by Penrose (1982) for quasi-local mass and angular 
momentum which comes from a rather different approach to the problem based upon 
twistor theory. 
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Appendix 

( a )  Proof that P,(S,) gives the Bondi momentum. 
Let 

I ( r ) = f  (PAflALB dS+CC 
S, 

(53) 

A where (PAB, o and i B  are as in 8 2. In terms of spin coefficients this may be written 

I ( r )  = -$ [Ao ,  B A l  - A , ~ d A o - A ~ ( 7 A 0 ~ + A o 8 A 1 ~ - A o A O ~ ( ~  +p),-AIAl,(p + p ) ]  dS. (54) 
fs, 

Then by equation (6) 

The simplest way of seeing that this gives the standard expression for the Bondi 
momentum is to substitute the asymptotic expansions of the relevant variables, in 
terms of Bondi coordinates, into equation (44). Remembering that our spinor dyad 
(oA, LA)  is related to a Bondi dyad (02,~;) by 

(56) * L A = L A - ~ O B  * 
OA = O A  

we obtain the following asymptotic expansions (Exton et a1 1969): 
0 -1  p = -r-l+ o ( ~ - ~ )  CL = -r - (a0&' + 42 + i&o)r-2 + o ( ~ - ~ )  

(57) 
8 = -r-'8o+aOr-*aro+0(r-~) dS  = t r 2 ( 1  -ao50r-2)dSo+O(r-') 

where do is the Newman-Penrose edth operator on a metric sphere and dSo= 
sin 8 de dd .  

Since ha is an asymptotically constant spinor 

A. = Ao+A,!,-' + o(r-*) (58) 

doh0 = -A1 and 8Ao = 0. (59) 

0 0 
A = A I  + A  :r-I + O(r-2) 

where 
- 0  0 0 

On substituting all the above in (44) and performing some integration by parts we 
obtain 

which gives 

i.e. 
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( 6 )  Gauss's theorem for null hypersurfaces. 

Let X be a null hypersurface with affine parameter r and let F a b  = EAB(PA'B' + EA'B'VAB 

be some real bivector. Let 0,' and be defined as in § 2. Then the Gauss integral 

I ( r )  = Fab dZab i. (63) 

may be rewritten as 

where 
p 1 = pA& 

We now introduce coordinates (xo, X I ,  x2 ,  x3 )  which are chosen so that JV" is given 
by x o  = 0 ,  x 1  = r and x , x 3  label the null geodesics. Since m a  = o 1 is tangent to 
S,, m a  has components ( 0 , 0 , c 2 , [ 3 ) .  The two-surface metric is given by gSab = 

2 A A' 

-2m,,mb,). It thus follows that 
3-2 2 det gsah = -(,f*F - 6  6 ) . 

On using the relation 

De' = p t l  -+ re1 i = 2 , 3  

obtained from 

(P8 - B D ) x '  = p dx ' + flax 

it may be shown that 

DdS=-2p dS 
and hence 

c 

i = 2 , 3  

(Pq, -2p(p1) dS +cc. (69) 

On the other hand 

where 4" = oAoBqAB. But 

$ (8q0 - 7'q0) dS = [m a V a q ~  - (m ' m  bVamb)(po] dS f 
= (i/Jz) $ ZNPqO dS 

= O  (since q0 has spin weight + 1) 

where ZNP is the Newman-Penrose edth operator in the form given by Goldberg et 
a1 (1967). 

Thus 
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and hence 

I(rz)  - I ( r l )  = Ir2 fs, I"VbF,b d S  dr. 
r = r l  
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